Aug. 31, 2020. Presentation at the 2020 American Society of Human Genetics meeting

We are giving a platform presentation at the upcoming American Society of Human Genetics virtual meeting #ASHG2020

Session: Personalized Medicine Approaches in Healthcare.

Paper: Pathway-extended gene expression signatures integrate novel biomarkers that improve predictions of responses to kinase inhibitors

P. K. Rogan(1,2), A. J. Bagchee-Clark(1), E. J. Mucaki(1). 1. Department of Biochemistry, University of Western Ontario and 2. CytoGnomix Inc., London ON Canada

Abstract: Individualized chemotherapy selection in cancer potentially maximizes drug efficacy while minimizing drug toxicity. Despite the knowledge of many pharmacogenetic biomarkers, inter-individual variability in response to chemotherapeutic response has limited the success of the approach. We derive multi-gene expression signatures that predict individual patient responses to tyrosine kinase inhibitors (TKIs): erlotinib, gefitinib, sorafenib, sunitinib, lapatinib and imatinib. Gene models for TKIs implicated from the published literature tend to predict either sensitivity or resistance to TKIs well (but not both). This
issue was addressed with a systems biology-based strategy that expanded with candidate gene products related to these genes in these models through biochemical pathways and interactions. Using patient transcriptome data, these Pathway-Extended (PE) models predicted responses for individual patients that matched observed outcomes at accuracies of 65% (imatinib), 71% (lapatinib and gefitinib), 78% (sunitinib), 83% (erlotinib) and 89% (sorafenib). After training and evaluating many extended signatures, those with the strongest predictive performance were composed primarily of pathway-related genes that according to post-hoc analysis were clearly implicated in cancer phenotypes. Machine learning-based PE expression signatures display strong efficacy in predicting both sensitivity and specificity in patients through incorporation
of novel cancer biomarkers.

#genomics #medicine #chemotherapy #cancertreatment #kinaseinhibitors

August 14, 2020. Interview on Scientific Sense podcast

Peter Rogan was interviewed by Gill Eapin for his daily podcast, Scientific Sense, focused on Science & Economics about our research projects about COVID19. Listen at the link below.

https://anchor.fm/scientificsense/episodes/Prof–Peter-Rogan–Professor-of-Biochemistry-and-Biostatistics-at-Western-University-ei5i40

#medicine #sarscov2 #covidー19 #medicalsciences #epidemiology #health #geostatistics #hotspots #publichealth #genomics #molecularmechanism

August 7, 2020. Publication of novel molecular mechanism of severe RNA-viral lung infections

We have described and provide evidence for an explanation for how rapid onset, severe RNA viral infections, such as SARS-CoV-2 or Influenza, may develop:

Rogan PK, Mucaki EJ and Shirley BC. A proposed molecular mechanism for pathogenesis of severe RNA-viral pulmonary infections. F1000Research 2020, 9:943 (https://doi.org/10.12688/f1000research.25390.1)

There is an accompanying infographic describing the mechanism, which is cited in the article:
Finally, the paper cites this data archive that contains our genomic analyses and related software programs:
Zenodo: Characteristics of human and viral RNA binding sites and site clusters recognized by SRSF1 and RNPS1. http://doi.org/10.5281/zenodo.3737089

August 6, 2020. Updated: Geostatistical Analysis of SARS-CoV-2 Positive Cases in the United States

We have just published a new version (#4) of our archive containing geostatistical analyses of SARS-CoV-2 positive cases in the United States (https://doi.org/10.5281/zenodo.3890284). This version adds state-by-state results after Federal and State relaxation of distancing constraints on Memorial Day weekend using space-time, countywide geostatistical analysis.