December 29, 2020. Coming soon… ADCI_Online

Greetings to you for a safe and healthy New Year.

The Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) has become the biodosimetry industry’s leading software system for accurate and rapid quantification of absorbed ionizing radiation. This year we upgraded our Windows-based system to also determine partial body exposures, both fraction of cells exposed and whole body equivalent dose levels (Shirley et al. 2020).

In the coming year, CytoGnomix will introduce ADCI in the Cloud. This version of our software will make ADCI available as a highly secure web-application.  All of the same functionality found in the Windows software will be available in ADCI_Online , except users will upload metaphase images to our AWS application. We have already validated the Demonstration Version of ADCI in this virtual environment. It is no longer necessary to download and install this software on your own computer in order to test drive it.

Contact us  to access a Demo of  ADCI_Online.

Screenshot:

 

 

Dec. 10, 2020. New article on chemotherapy response prediction

We have published:
Pathway‐extended gene expression signatures integrate novel biomarkers that improve predictions of patient responses to kinase inhibitors.

Ashis J. Bagchee‐Clark , Eliseos J. Mucaki, Tyson Whitehead, and Peter K. Rogan

MedComm (Wiley) 1(3): 311-327, 2020.  (https://doi.org/10.1002/mco2.46)

Abstract:
Cancer chemotherapy responses have been related to multiple pharmacogenetic biomarkers, often for the same drug. This study utilizes machine learning to derive multi‐gene expression signatures that predict individual patient responses to specific tyrosine kinase inhibitors, including erlotinib, gefitinib, sorafenib, sunitinib, lapatinib and imatinib. Support vector machine (SVM) learning was used to train mathematical models that distinguished sensitivity from resistance to these drugs using a novel systems biology‐based approach. This began with expression of genes previously implicated in specific drug responses, then expanded to evaluate genes whose products were related through biochemical pathways and interactions. Optimal pathway‐extended SVMs predicted responses in patients at accuracies of 70% (imatinib), 71% (lapatinib), 83% (sunitinib), 83% (erlotinib), 88% (sorafenib) and 91% (gefitinib). These best performing pathway‐extended models demonstrated improved balance predicting both sensitive and resistant patient categories, with many of these genes having a known role in cancer aetiology. Ensemble machine learning‐based averaging of multiple pathway‐extended models derived for an individual drug increased accuracy to >70% for erlotinib, gefitinib, lapatinib and sorafenib. Through incorporation of novel cancer biomarkers, machine learning‐based pathway‐extended signatures display strong efficacy predicting both sensitive and resistant patient responses to chemotherapy.