Genome-Scale Variant Interpretation
Automated Radiation Dose Estimation
Mission Statement
MutationForecaster® (mutationforecaster.com) is Cytognomix’s patented web-portal for analysis of all types of mutations – coding and non-coding- including interpretation, comparison and management of genetic variant data. It’s a fully automated genome interpretation solution for research, translational and clinical labs.
Run our world-leading genome interpretation software on your exome, gene panel, or complete genome (Shannon transcription factor and splicing pipelines, ASSEDA, Veridical) with the Cytognomix User Variation Database and Variant Effect Predictor. With our integrated suite of software products, analyze coding, non-coding, and copy number variants, and compare new results with existing or your own database. Select predicted mutations by phenotype using articles with CytoVisualization Analytics. With Workflows, automatically perform end-to-end analysis with all of our software products. Download an 1 page overview of MutationForecaster® (link)
Subscribe and analyze your own data via the cloud or… Don’t want to run your own analyses on MutationForecaster®? Let us do it for you with our Bespoke Analysis Service.
Experience our suite of genome interpretation products through a free trial of MutationForecaster®. Once you register, we provide datasets from our peer-reviewed publications to evaluate these software tools.
Automated radiation biodosimetry
Ionizing radiation produces characteristic chromosome changes. The altered chromosomes are known as dicentric chromosomes [DCs]). DC biodosimetry is approved by the IAEA for occupational radiation exposure, radiation emergencies, or monitoring long term exposures. The DC assay can also monitor effects of interventional radiation therapies.
Cytognomix has developed a novel approach to find DCs (TBME). The Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) software works on multiple platforms and uses images produced by any of the existing automated metaphase capture systems found in most cytogenetic laboratories. ADCI is now available for for trial or purchase (link). Or contact us for details (pricing).
ADCI* uses machine learning to distinguish monocentric and dicentric chromosomes (Try the Dicentric Chromosome Identifier web app). With novel image segmentation, ADCI has become a fully functional cytogenetic biodosimetry system. ADCI takes images from metaphase scanning systems, selects high quality cells, identifies dicentric chromosomes, builds biodosimetry calibration curves, and estimates exposures. ADCI fulfills the criteria established by the IAEA for accurate triage biodosimetry of a sample in less than an hour. The accuracy is comparable to an experienced cytogeneticist. Check out our online user manual: wiki.
We find and validate mutations and gene signatures that others cannot with advanced, patented genomic bioinformatic technologies. Cytognomix continues our long track record of creating technologies for genomic medicine. We anticipate and implement the needs of the molecular medicine and genomics communities.
Predict chemotherapy outcomes
Pharmacogenomic responses to chemotherapy drugs can be predicted by supervised machine learning of expression and copy number of relevant gene combinations. Since 2015, CytoGnomix has used biochemical evidence to derive gene signatures from changes in gene expression in cell lines, which can subsequently be examined in patients that have been treated with the same drugs. We have derived signatures for 30 different commonly used drugs. Try out out our online predictor: https://chemotherapy.cytognomix.com.
Quantifying responses to ionizing radiation with gene expression signatures.
Gene signatures derived by machine learning have low error rates in externally validated, independent radiation exposed data. They exhibit high specificity and granularity for dose estimation in humans and mice. These signatures can be designed to avoid the effects of confounding, comorbidities which can reduce specificity for detecting radiation exposures. See: https://f1000research.com/articles/7-233/v2
Single copy genomic technologies
- Customized genomic microarrays
- Ultrahigh resolution FISH probes (article):
- Microarray-based comparative genomic hybridization (aCGH) can use SC technology to increase reproducibility and reduce cost per sample.
Latest Posts
June 27, 2015. Best oral presentation at the 12th Annual London Oncology Research & Education Conference
Natasha Caminsky presented: A Unified Framework for the Identification and Prioritization of Coding and Non-Coding Variants in Heritable Breast and Ovarian Cancer (HBOC). which introduces Cytognomix’s approach for analysis of a wide range of regulatory mutations in complete human gene and genome data. The other authors of this study were Mucaki EJ, Lu R, Perri AM, […]
April 18, 2015. New software distribution agreement for MutationForecaster
Today, Cytognomix Inc. and Illumina signed a distribution agreement to make MutationForecaster software available through the BaseSpace ecosystem. Work is underway to enable Illumina users to analyze data processed in BaseSpace to be interpreted with Cytognomix’s software. The BaseSpace environment enables MiSeq users to carry out sequence analyses with requiring an onsite computing infrastructure, with […]
May 22, 2015. MutationForecaster receives US Trademark
On May 12, the US Patent and Trademark Office awarded CytoGnomix a trademark for: MutationForecaster®
May 21, 2015. Platform presentation at Compute Ontario Research Day
Dr. Peter Rogan’s laboratory at the University of Western Ontario will present: Discovery of Primary, Cofactor, and Novel Transcription Factor Binding Site Motifs by Recursive, Thresholded Entropy Minimization by Ruipeng Lu 1, Eliseos Mucaki 2, and Peter Rogan 1,2,3. Departments of (1) Computer Science and (2)Biochemistry, University of Western Ontario, and (3)Cytognomix Inc., London ON at Compute Ontario […]
May 14, 2015. Presentation at the Great Lakes Chromosome Conference
Dr. Joan Knoll, Chief Scientific Officer of Cytognomix, will present: Localized, Structural Differences in Condensation of Homologous Metaphase Chromosomes and the Underlying Mechanism at the 53rd Annual Great Lakes Chromosome Conference at the University of Toronto, Ontario, Canada.
April 30. Sale of MutationForecaster subscription
Cytognomix has sold an annual subscription to MutationForecaster, our comprehensive solution for next generation sequencing based mutation interpretation, to a hospital in Toronto, Ontario Canada. This customer was a previous subscriber to the Automated Site and Exon Definition Server, which is embedded in MutationForecaster and no longer available as standalone software.
April 30, 2015. Sale of Shannon mRNA splicing mutation pipeline software license
Cytognomix’s standalone version of the Shannon mRNA splicing mutation analysis pipeline is distributed through Qiagen CLC bio as a plug-in for their Genomics Workbench and Server software.This product was recently purchased by Dr. Hidetaka Eguchi at the Research Center for Genomic Medicine, Saitama Medical University, Japan.
April 6, 2015. New paper published on cancer of unknown primary
Collaborative effort led by Greg Zaric at the University of Western Ontario: Identification and survival outcomes of a cohort of patients with cancer of unknown primary in Ontario, Canada. Kim CS1, Hannouf MB, Sarma S, Rodrigues GB, Rogan PK, Mahmud SM, Winquist E, Brackstone M, Zaric GS. Acta Oncol. 2015 Mar 31:1-7. (link)