Genome-Scale Variant Interpretation
Automated Radiation Dose Estimation
Mission Statement
MutationForecaster® (mutationforecaster.com) is Cytognomix’s patented web-portal for analysis of all types of mutations – coding and non-coding- including interpretation, comparison and management of genetic variant data. It’s a fully automated genome interpretation solution for research, translational and clinical labs.
Run our world-leading genome interpretation software on your exome, gene panel, or complete genome (Shannon transcription factor and splicing pipelines, ASSEDA, Veridical) with the Cytognomix User Variation Database and Variant Effect Predictor. With our integrated suite of software products, analyze coding, non-coding, and copy number variants, and compare new results with existing or your own database. Select predicted mutations by phenotype using articles with CytoVisualization Analytics. With Workflows, automatically perform end-to-end analysis with all of our software products. Download an 1 page overview of MutationForecaster® (link)
Subscribe and analyze your own data via the cloud or… Don’t want to run your own analyses on MutationForecaster®? Let us do it for you with our Bespoke Analysis Service.
Experience our suite of genome interpretation products through a free trial of MutationForecaster®. Once you register, we provide datasets from our peer-reviewed publications to evaluate these software tools.
Automated radiation biodosimetry
Ionizing radiation produces characteristic chromosome changes. The altered chromosomes are known as dicentric chromosomes [DCs]). DC biodosimetry is approved by the IAEA for occupational radiation exposure, radiation emergencies, or monitoring long term exposures. The DC assay can also monitor effects of interventional radiation therapies.
Cytognomix has developed a novel approach to find DCs (TBME). The Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) software works on multiple platforms and uses images produced by any of the existing automated metaphase capture systems found in most cytogenetic laboratories. ADCI is now available for for trial or purchase (link). Or contact us for details (pricing).
ADCI* uses machine learning to distinguish monocentric and dicentric chromosomes (Try the Dicentric Chromosome Identifier web app). With novel image segmentation, ADCI has become a fully functional cytogenetic biodosimetry system. ADCI takes images from metaphase scanning systems, selects high quality cells, identifies dicentric chromosomes, builds biodosimetry calibration curves, and estimates exposures. ADCI fulfills the criteria established by the IAEA for accurate triage biodosimetry of a sample in less than an hour. The accuracy is comparable to an experienced cytogeneticist. Check out our online user manual: wiki.
We find and validate mutations and gene signatures that others cannot with advanced, patented genomic bioinformatic technologies. Cytognomix continues our long track record of creating technologies for genomic medicine. We anticipate and implement the needs of the molecular medicine and genomics communities.
Predict chemotherapy outcomes
Pharmacogenomic responses to chemotherapy drugs can be predicted by supervised machine learning of expression and copy number of relevant gene combinations. Since 2015, CytoGnomix has used biochemical evidence to derive gene signatures from changes in gene expression in cell lines, which can subsequently be examined in patients that have been treated with the same drugs. We have derived signatures for 30 different commonly used drugs. Try out out our online predictor: https://chemotherapy.cytognomix.com.
Quantifying responses to ionizing radiation with gene expression signatures.
Gene signatures derived by machine learning have low error rates in externally validated, independent radiation exposed data. They exhibit high specificity and granularity for dose estimation in humans and mice. These signatures can be designed to avoid the effects of confounding, comorbidities which can reduce specificity for detecting radiation exposures. See: https://f1000research.com/articles/7-233/v2
Single copy genomic technologies
- Customized genomic microarrays
- Ultrahigh resolution FISH probes (article):
- Microarray-based comparative genomic hybridization (aCGH) can use SC technology to increase reproducibility and reduce cost per sample.
Latest Posts
October 5, 2021. New conference summary article from ConRad 2021 published
Patrick Ostheim, Sally A. Amundson, Christophe Badie, Dimitry Bazyka, Angela C. Evans, Shanaz A. Ghandhi, Maria Gomolka, Milagrosa López Riego, Peter K. Rogan, Robert Terbrueggen, Gayle E. Woloschak, Frederic Zenhausern, Hanns L. Kaatsch, Simone Schüle, Reinhard Ullmann, Matthias Port & Michael Abend (2021) Gene Expression for Biodosimetry and Effect Prediction Purposes: Promises, Pitfalls and Future Directions – […]
MutationForecaster® Trademark renewed by US Patent and Trademark Office
The trademark on CytoGnomix MutationForecaster® system has been renewed for another 10 years.
Aug. 24, 2021. New preprint: More sensitive and specific radiation gene expression signatures
Mucaki, EJ, Shirley BC, and PK Rogan.Improved radiation expression profiling by sequential application of sensitive and specific gene signatures. BioRxiv 2021.08.18.456812. https://doi.org/10.1101/2021.08.18.456812 #artificialintelligence #radiationsafety #geneexpression #genesignature
June 18, 2021. CytoGnomix is finalist in Innovation Forum (Cambridge UK) Entrepreneurship Global Accelerator
Linked in post:
Lightning Presentation at “Healthcare without Boundaries” Colloquium – June 2, 2021
CytoGnomix will be presenting: “Radiation biodosimetry exposure assessment from gene expression signatures can be confounded by other underlying disease pathologies” at the CSA / NRC-IRAP Colloquium Healthcare Without Boundaries on June 2, 2021. #medicine #healthcare #health #research #radiationprotection
Poster presentation at ConRad 2021 on radiation biodosimetry with ADCI
On May 10, 2021, CytoGnomix is presenting a poster at ConRad 2021 (www.radiation-medicine.de) titled: Demonstration of the Automated Dicentric Chromosome Identifier and Dose Estimator [ADCI] System in a Cloud-based, Online Environment. From the abstract: Interpretation of cytogenetic metaphase images and quantification of exposures remain labour intensive in radiation biodosimetry, despite computer-assisted dicentric chromosome (DC) recognition […]
Platform presentation at ConRad 2021 on radiation gene signatures
On May 10, 2021, Dr. Rogan is giving a platform presentation at ConRad 2021 (www.radiation-medicine.de) titled “Radiation biodosimetry exposure assessment from gene expression signatures can be confounded by other underlying disease pathologies.” Misclassification of patients with underlying disorders by otherwise accurate radiation gene signatures compromises their utility for population-scale radiation exposure assessment. Underlying conditions modify […]
March 29, 2021. Article describing accelerated biodosimetry by high performance computing
We have published a new article about accelerating biodosimetry testing in a large scale radiation incident: Rogan PK, Mucaki EJ, Shirley BC, Li Y, Wilkins RC, Norton F, Sevriukova O, Pham N-D, Waller E, Knoll JHM. Automated Cytogenetic Biodosimetry at Population-Scale. Radiation. 2021; 1(2):79-94. doi: 10.3390/radiation1020008 (2021)